
Multiprocessor Clustering for Embedded Systems1

Vida Kianzad and Shuvra S. Bhattacharyya
University of Maryland at College Park

{vida, ssb}@eng.umd.edu

Abstract. In this paper, we address two key trends in the synthesis of implemen-
tations for embedded multiprocessors — (1) the increasing importance of managing
interprocessor communication (IPC) in an efficient manner, and (2) the acceptance
of significantly longer compilation time by embedded system designers. The former
aspect is evident in the increasing interest among embedded system architects in
innovative communication architectures, such as those involving optical intercon-
nection technologies, and hybrid electro-optical structures [7]. The latter aspect
results because embedded multiprocessor systems are typically designed as final
implementations for dedicated functions. While multiprocessor mapping strategies
for general-purpose systems are usually designed with low to moderate complexity
as a constraint, embedded system design tools are allowed to employ more thorough
and time-consuming optimization techniques.

1. Introduction
In this paper, we develop novel partitioning and scheduling techniques that

aggressively streamline interprocessor communication. We address the increasing impor-
tance of managing interprocessor communication in an efficient manner. This importance
is due to the increasing interest among embedded system architects in innovative commu-
nication architectures, such as those involving optical interconnection technologies, and
hybrid electro-optical structures [7]. Effective experimentation with unconventional archi-
tectures requires adequate design tools that can exploit such architectures. We also address
the increased compile time tolerance in embedded system design. This results because
embedded multiprocessor systems are typically designed as final implementations for
dedicated functions; modifications to embedded system implementations are rare, and this
allows embedded system design tools to employ more thorough, time-consuming optimi-
zation techniques. In contrast, multiprocessor mapping strategies for general purpose sys-
tems are typically designed with low to moderate complexity as a constraint.

Our work builds on the two-phased decomposition of multiprocessor scheduling
that was introduced by Sarkar [5], and explored subsequently by other researchers such as
Yang and Gerasoulis [10]. In this decomposition, the application graph is first mapped to a
fully-connected multiprocessor architecture that has an unbounded number of processors.
The goal of mapping here is to minimize the net execution time. In the second phase of
Sarkar’s two-phase process, called merging, the derived schedule is mapped onto the
given resource-constrained architecture. Our use of Sarkar’s decomposition scheme and
the associated breakdown of scheduling into different phases is motivated by the idea of

1.This research was sponsored by the Defense Advanced Research Projects Agency, and
the U. S. National Science Foundation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Multiprocessor Clustering for Embedded Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,8400 Baltimore Avenue,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

introducing modularity, and hence more flexibility, in allocating compile-time resources
throughout the optimization process. In this paper, we focus on the first phase (clustering) of
this decomposed problem. Algorithms to address second phase have been discussed in [8].

2. Background and Previous Work
In the context of embedded system implementation, one limitation shared by many

scheduling algorithms is that they have been designed for general purpose computation. In the
general-purpose domain, there are many applications for which short compile time is of major
concern. In such scenarios, it is highly desirable to ensure that an application can be mapped
to an architecture within a matter of seconds. Sarkar’s internalization algorithm (SIA) and the
dominant sequence clustering algorithm (DSC)[10] provide such low complexity algorithms.

However, being deterministic in nature, neither SIA nor DSC can exploit the
increased compile time tolerance in embedded system implementation. There has been some
probabilistic search implementation of scheduling heuristics in the literature, such as genetic
algorithms (GAs), that exploit this increased compile time tolerance. Hou et al. [2], Wang and
Korfhage [9], Kwok and Ahmad [4], Zomaya et al. [12], and Correa et al. [1] have proposed
different genetic algorithms in the scheduling context. Hou and Correa use similar integer
string representations of solutions. Wang and Korfhage use a two-dimensional matrix scheme
to encode the solution. Kwok and Ahmad also use integer string representations, and Zomaya
et al. use a matrix of integer substrings. All of these algorithms have relatively complex solu-
tion representations in the underlying GA formulation. We show that in the context of the
clustering/merging decomposition, we can avoid these complications in the clustering phase,
and use more streamlined solution encodings for clustering.

We have explored a number of approaches for exploiting the increased compile-time tol-
erance in embedded multiprocessor implementation, the first of which applies the concept of
GAs to develop a novel approach for multiprocessor clustering and scheduling. We represent
the applications that are to be mapped into parallel implementations in terms of the widely-
used task graph model. A task graph is a directed acyclic graph (DAG) , where
• is the set of task nodes, which are in one-to-one correspondence with the computational
tasks in the application ().
• is the set of communication edges (each member is an ordered pair of tasks).
• denotes a function that assigns an execution time to each member of .
• denotes a function that gives the cost (latency) of each communication edge.
That is, for all ; for all , ; and is the cost
of transferring data between and if they are assigned to different processors.

The net execution time is defined by the following expression:

, (1)

where () is the length of the longest path between node and the
source (sink) node in the scheduled graph, including all of the communication and computa-
tion costs in that path, but excluding from . Here, by the scheduled graph, we
mean the task graph with all known information about clustering and task execution ordering
modeled using additional zero-cost edges. In particular, if and are clustered together,
and is scheduled to execute immediately after , then the edge is inserted in the
scheduled graph.

G V E,()=
V

V v1 v2 … v V, , ,{ }=()
E
t V ℵ→: V
C V: V ℵ→×

C v v,() 0≡ V C v1 v2,() C v2 v1,()= v1 v2 C v1 v2,()
v1 v2

τN max tlevel vx() blevel vx()+ vx V∈()=

tlevel vx() blevel vx() vx

t vx() tlevel vx()

v1 v2
v2 v1 v1 v2,()

3. Solution Representation
We propose a new framework for applying GAs to scheduling problems. Our solu-

tion representation encodes scheduling-related information as a single subset of graph edges
, with no notion of an ordering among the elements of . This representation can be used

with a wide variety of scheduling and clustering problems. It exploits the view of a clustering
as a subset of edges in the task graph. Gerasoulis and Yang have suggested this view of clus-
tering in their characterization of certain clustering algorithms as being edge-zeroing algo-
rithms [10]. One of our contributions in this paper is to apply this subset-based view of
clustering to develop a natural, efficient genetic algorithm formulation. For the purpose of a
genetic algorithm, the representation of graph clusterings as subsets of edges is attractive
since subsets have natural and efficient mappings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a similarity template that repre-
sents a subset of), canonical GAs (which use binary representations of solution
spaces) provide near-optimal sampling strategies. Furthermore, binary encodings in which the
semantic interpretations of different bit positions exhibit high symmetry (e.g., in our case,
each bit corresponds to the existence or absence of an edge within a cluster) allow us to lever-
age extensive prior research on genetic operators for symmetric encodings rather than forcing
us to develop specialized, less-thoroughly-tested operators to handle the underlying non sym-
metric representation. Accordingly, our binary encoding scheme is favored both by schema
theory, and significant prior work on genetic operators. Furthermore, by providing no con-
straints on genetic operators, our encoding scheme preserves the natural behavior of GAs.

Our approach to encoding clustering solutions is based on the following definition.
Definition 1: Suppose that is a subset of task graph edges. Then denotes
the clusterization function associated with . This function is defined by:

. (2)

When using a clusterization function to represent a clustering solution, the edge subset is
taken to be the set of edges that are contained in clusters. An illustration is shown in Figure 1.
Because it is based on using clusterization functions to represent candidate solutions, we refer
to our GA approach as the clusterization function algorithm (CFA).

In the CFA, the initial population is initialized with a random selection of clusteriza-
tion functions (mappings from into) and its fitness is evaluated from the net execu-
tion time (from (1)). To compute , we have applied a modified version of list
scheduling that abandons the restrictions imposed by a global scheduling clock, as proposed
in [6]. More details on our implementation can be found in [3].

4. Performance Evaluation and Comparison
In this section, we present an experimental comparison of DSC, SIA and CFA. To be

fair in comparison of these algorithms (DSC and SIA are deterministic heuristics, while our
GA is a guided probabilistic search method), we have implemented randomized versions of
DSC and SIA — each such randomized algorithm, like CFA, can exploit increases in addi-
tional computational resources to explore larger segments of the solution space.

We have incorporated randomization into to the edge selection process when deriv-
ing randomized versions of DSC (RDSC) and SIA (RSIA). In the randomized versions, the

β β

0 1,{ }n

β fβ E 0 1,{ }→:
β

f ei()
0 if ei β∈()

1 otherwise

=

β

E 0 1,{ }
τN τN

first element of the sorted edge list — the candidate to be zeroed — is selected with probabil-
ity , (we call the randomization parameter); if this element is not chosen, the second ele-
ment is selected with probability ; and so on, until some element is chosen, or no element is
returned after considering all the elements in the list. In this last case (no element is chosen), a
random number is chosen from a uniform distribution over (where is the
set of edges that have not yet been clustered). Further details on this general approach to
incorporating randomization into greedy, priority-based algorithms can be found in [11],
which explores randomization techniques in the context of DSP memory management.

Each randomized algorithm begins by first applying the underlying (original) deter-
ministic algorithm, and then repeatedly computing additional solutions with a “degree of ran-
domness” determined by . The best solution computed within the allotted compile-time
tolerance (e.g., 10 min., 1 hr., etc.) is returned. The allotted running time for each input graph
to RDSC or RSIA was determined from the CFA running time on the same graphs for 3000
iterations, which allows comparison under equal amounts of running time.

All the heuristics have been tested with two sets of input graphs, DSP-related task
graphs and random graphs (with 50 to 1000 nodes). We have also varied the communication
to computation cost ratio (CCR), between 0.1 to 10 when experimenting with each task graph.
The net execution times of random graphs for all algorithms are shown in Figure 2 (more

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23

1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1

 c.

 = {{1,2,5,12},
 {9},
 {17,19,22},
 {21}}

Cluster Nodes
c1 0,1,3,5,11
c2 2
c3 4,8
c4 6
c5 7
c6 9
c7 10,13,14,15
c8 12,16

β

 Figure 1. (a) A clustering of an application graph; (b) the corresponding subset of “zeroed”
edges; (c) the corresponding clusterization function .

β
fβ

b.

p p
p

0 1 … T 1–, ,{ , } T

p

Figure 2. of different heuristic and randomized algorithms for random graphs.τN

0 1 2 3 4 5 6 7 8 9 10
2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

(a) CCR (0 .1~10)

t N

D S C

S I A

C F A

D S C

C F A

S I A

0 1 2 3 4 5 6 7 8 9 10
200

300

400

500

600

700

(b) CCR (0.1~10)

t N

RDSC

CFA

RSIA

results, including those on the DSP-related graphs, can be found in [3]). It can be seen from
the figure that CFA consistently performs significantly better than the other approaches, and
the benefit of the CFA approach increases with increasing CCR values. Overall, for both ran-
dom and application-related graphs, our experimental results [3] show that CFA is preferable
for compile time tolerances that accommodate the underlying GA configuration (less than 1
min. to 10 hrs for the graphs that we considered in our experiments).

5. Summary and Conclusions
This paper has explored multiprocessor clustering techniques to exploit the increased

compile time tolerance of the embedded systems domain, and achieve efficient mapping of
applications onto multiprocessor architectures. We have developed a novel and natural
genetic algorithm formulation, called CFA, for multiprocessor clustering, as well as random-
ized versions, called RDSC and RSIA, of two well-known deterministic algorithms, DSC [10]
and SIA [5], respectively. RDSC and RSIA perform at least as well as DSC and SIA, but are
able to exploit arbitrary increases in compile time tolerance due to their incorporation of prob-
abilistic selection. Based on these developments, we have performed an extensive experimen-
tal study that compares the alternative strategies under equal amounts of running time
(compile time tolerance). Our experiments have demonstrated that the CFA algorithm signifi-
cantly outperforms RDSC and RSIA, and that the improvement offered by CFA increases
with increasing communication costs in the application relative to the amount of computation.
Thus, CFA is especially useful when managing communication costs is important. Presently,
we are developing further experiments to quantify these distinctions. Another useful direction
for further work is exploring the integration of merging algorithms into the CFA framework
(e.g., in the fitness evaluation phase).

References
1. R.C. Correa, A. Ferreira, P. Rebreyend, “Scheduling Multiprocessor Tasks with Genetic Algorithms,”
IEEE Trans. on Parallel and Distributed Sys., Vol. 0, 825-837, 1999.
2. E.S. H. Hou, N. Ansari, H. Ren, “A Genetic Algorithm for Multiprocessor Scheduling,” IEEE Trans.
on Parallel and Distributed Systems, Vol. 5, 113-120, 1994.
3. V. Kianzad, S. S. Bhattacharyya, Multiprocessor clustering for embedded system implementation.
Tech. report, Inst. for Advanced Computer Studies, UMCP June 2001.
4. Y. Kwok, I. Ahmad, “Efficient Scheduling of Arbitrary Task Graphs to Multiprocessors Using A Par-
allel Genetic Algorithm,” Journal of Parallel and Distributed Computing, 1997.
5. V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors . MIT Press, 1989.
6. G. C. Sih, E. Lee, “A compile-time scheduling heuristic for interconnection-constrained heterogeneous
processor architectures.” IEEE Trans. on Parallel and Dist. Sys., Vol. 4, No. 2, 1993.
7. D. Spencer, J. Kepner, D. Martinez, “Evaluation of advanced optoelectronic interconnect technology,”
MIT Lincoln Laboratory August 1999.
8. T.Yang, A. Gerasoulis, “PYRROS: States scheduling and code generation for message passing multi-
processors,” Proc. of 6th ACM Int. Conf. on Supercomputing, 1992.
9. P. Wang, W. Korfhage, “Process Scheduling Using Genetic Algorithms,” IEEE Symp. on Parallel and
Distributed Processing, 638-641, 1995.
10. T.Yang, A.Gerasoulis, “DSC: scheduling parallel tasks on an unbounded number of processors,”
IEEE Trans. on Parallel and Distributed Sys., Vol. 5, 951-967, 1994.
11. E. Zitzler, J. Teich, S. S. Bhattacharyya. Optimized software synthesis for DSP using randomization
techniques. Tech. report, Swiss Federal Institute of Technology, Zurich, July 1999.
12. A.Y. Zomaya, C. Ward, B. Macey, “Genetic scheduling for parallel processor systems: comparative
studies and performance issues,” IEEE Trans. on Parallel and Dist. Sys., Vol. 10, 795-812, 1999.

	annot: In the Proceedings of the European Conference on Parallel Computing, Manchester, United Kingdom, August 2001.

